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Lung squamous cell carcinoma (LSCC) is a common histological lung cancer subtype,
but unlike lung adenocarcinoma, limited therapeutic options are available for treatment.
Curcumin, a natural compound, may have anticancer effects in various cancer cells,
but how it may be used to treat LSCC has not been well studied. Here, we applied
curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored
underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292
cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2
expression was decreased in LSCC tissues compared with adjacent normal tissues
and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell
proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of
STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas
a STAT3 activator (IL-6) significantly inhibited curcumin-induced FOXA2 expression.
Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated
by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by
increasing FOXA2 expression via regulation of STAT3 signaling pathways.

Keywords: lung squamous cell carcinoma, curcumin, FOXA2, proliferation, STAT3

INTRODUCTION

Lung cancer, a highly malignant tumor associated with mortality, can occur as small cell lung
cancer (SCLC) or non-small cell lung cancer (NSCLC) (Malanga et al., 2008; Bersaas et al.,
2016). Lung squamous cell carcinoma (LSCC), formerly the most common histologic subtype of
NSCLC, is characterized by a poor therapeutic response, a high relapse rate, and poor prognosis
(Justilien et al., 2014). Unlike lung adenocarcinoma, limited therapeutic options are available for
advanced-stage LSCC, therefore, new and better targets or drugs are needed.

Forkhead box transcription factor A2 (FOXA2), or hepatocyte nuclear factor 3 beta (HNF3β),
is a member of the forkhead box gene superfamily (Jang et al., 2015). Studies suggest that FOXA2
may be a suppressor of tumor metastasis in human lung cancers (Tang et al., 2011). FOXA2
regulates the expression of genes critical to lung morphogenesis, and loss of FOXA2 expression
is frequent in lung cancer cell lines (Khoor et al., 2004). Also, squamous cell carcinomas uniformly
lack FOXA2 staining (Khoor et al., 2004). A recent study indicated that long-term tobacco smoke

Frontiers in Pharmacology | www.frontiersin.org 1 February 2018 | Volume 9 | Article 60

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00060
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00060&domain=pdf&date_stamp=2018-02-02
https://www.frontiersin.org/articles/10.3389/fphar.2018.00060/full
http://loop.frontiersin.org/people/520921/overview
http://loop.frontiersin.org/people/520924/overview
http://loop.frontiersin.org/people/520931/overview
http://loop.frontiersin.org/people/520932/overview
http://loop.frontiersin.org/people/487136/overview
http://loop.frontiersin.org/people/520936/overview
http://loop.frontiersin.org/people/478301/overview
http://loop.frontiersin.org/people/520927/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00060 January 31, 2018 Time: 14:54 # 2

Tang et al. Curcumin Inhibits NCI-H292 Cells Growth

carcinogen exposure downregulated FOXA2 in human bronchial
epithelial cells (Bersaas et al., 2016). Therefore, FOXA2 may be
an important target protein for therapies against LSCC since
LSCCs are linked more strongly with smoking than other forms
of NSCLC (Khoor et al., 2004; Basseres et al., 2012), and activation
of FOXA2 may be useful for treating human LSCC.

Curcumin is derived from dry rhizomes of the turmeric plant
Curcuma longa, and it may have activity against aggressive and
recurrent cancers, including lung cancer (Mimeault and Batra,
2011; Gupta et al., 2013). Curcumin may inhibit cell proliferation
and induce apoptosis (Radhakrishna Pillai et al., 2004; Chen
et al., 2010; Jin et al., 2015), enhance chemotherapeutic efficacy
(Sen et al., 2005; Chanvorachote et al., 2009), and inhibit
metastasis of human lung cancer cells (Liao et al., 2015; Tsai
et al., 2015). However, little evidence suggests that curcumin may
be useful for LSCC. Zhao et al. (2015) suggested that curcumin
reduced cell viability in SK-MES-1 human LSCC cells, and
Abbas et al. (2015) reported that curcumin treatment increased
endogenous PIAS3 expression and decreased cell growth and
viability in Calu-1 human LSCC cells. In NCI-H292 LSCC
cells, Haque et al. (2015) and Amin et al. (2015) reported
anticancer activity of curcumin and suggested it might target
multiple pathways in cells. Thus, we studied whether FOXA2
might participate in anticancer activity of curcumin in NCI-H292
cells.

STAT3 protein is 1 of 7 cytoplasmic transcription factor family
members including STAT1-6, STAT5a, and STAT5b (Furqan
et al., 2013) which are aberrantly activated in lung cancer
tissues (Sanchez-Ceja et al., 2006; Jiang et al., 2016). Moreover,
increased STAT3 activity is correlated to poorer overall survival
of lung cancer patients (Tong et al., 2017). Thus, STAT3 has
been regarded as a key target for lung cancer prevention
(Dutta et al., 2014; Harada et al., 2014), and inhibition of
STAT3 signal showed great anticancer and antiangiogenic effects
in vitro and in vivo (Yang et al., 2012; Xu and Zhu, 2017).
Recent study showed that activation of STAT3 by Mycoplasma
pneumoniae inhibited FOXA2 expression in human NCI-H292
LSCC cells (Mishina et al., 2015). It has also been found
that curcumin treatment suppressed STAT3 phosphorylation
and reduced the proliferative capacity of lung adenocarcinoma-
derived H441 cells, indicating STAT3 as a potential target by
curcumin in lung cancer (Alexandrow et al., 2012). Perhaps
curcumin regulates STAT3-FOXA2 signaling in human NCI-
H292 cells.

Here, we describe the anticancer effects of curcumin on
cell proliferation in NCI-H292 cells and a potential underlying
mechanism that may involve FOXA2.

MATERIALS AND METHODS

Cell Culture
Human NCI-H292 LSCC cell lines were maintained in RPMI
medium 1640 (Thermo Fisher Scientific, Waltham, MA,
United States) supplemented with 10% fetal bovine serum,
penicillin, and streptomycin. Cells were maintained at 37◦C in
a 5% CO2 incubator.

Tissue Microarray
Tissue microarrays (TMAs) of LSCC were provided by OUTDO
Biotech Co., Ltd. (Shanghai, China), containing 89 cases of LSCC
cancer tissues and paired adjacent normal tissue. Tissue samples
were collected from patients in Taizhou Hospital of Zhejiang
Province and approved by the Ethics Committee of Taizhou
Hospital of Zhejiang Province. Informed consent was obtained
from all patients. Among 89 cases, 81 cases were male, 8 cases
were female; 28 cases were under the age of 60 years, and 61 cases
were above 60 years in age.

Immunohistochemistry
In brief, formalin-fixed, paraffin-embedded sections from 89
LSCC patients were deparaffinized and rehydrated. After antigen
retrieval using citrate buffer (0.01 mmol/L, pH 6.0), the slides
were washed three times with PBS and incubated in 10%
normal goat serum to block nonspecific background staining.
Sections were then incubated overnight with rabbit anti-human
FOXA2 antibodies (Abcam, Cambridge, United Kingdom) at
4◦C. After incubation, tissue sections were washed with PBS and
treated with a streptavidin-biotin-peroxidase complex (SABC
kit, Boster, Wuhan, China). Signal detection was performed
using diaminobenzidine (DAB). Immunohistochemical staining
was assessed semi-quantitatively by measuring intensity of the
staining (0, 1, 2, or 3) and extent of staining (0, 0%; 1, 0–10%; 2,
10–50%; 3, 50–100%). Intensity scores and extent of staining were
multiplied to give a weighted score for each case. For statistical
analysis, weighted scores were grouped in two categories for
which scores of 0–3 were considered negative and 4–9 were
positive.

Cell Viability Assays
Cell viability was measured by using a Cell Counting Kit-8
(CCK-8, Dojindo, Japan) according to the manufacturer’s
instructions. Briefly, cells were seeded at a density of 0.5 × 104

cells/well in 96-well plates, and incubated in RPMI medium
1640 supplemented without FBS overnight. Curcumin (Selleck,
Houston, United States) was dissolved in dimethyl sulfoxide
(DMSO). Cells were treated with various concentrations (0, 5, 10,
20, and 40 µM) of curcumin for 24 h, and appropriate controls
were treated with DMSO at the same concentrations. The samples
were tested every 24 h for 3 days. CCK-8 solution (10 µl) was
added to each well for 2 h and optical density was measured at
450 nm to estimate viable cells.

Apoptosis Analysis
An Annexin V, 633 Apoptosis Detection Kit (Dojindo, Japan) was
used according to the manufacturer’s protocol. In brief, harvested
cells were mixed, washed twice with PBS and resuspended
in binding buffer at a final density of 106 cells/ml. Annexin
V-633 (5 µl) were added to 100 µl of the cell suspension
containing 105 cells. The cell suspension was mixed and
then incubated for 15 min at room temperature in the dark.
Subsequently, 200 µl of binding buffer were added and cells were
analyzed by flow cytometry using Calibur (BD Bioscience, CA,
United States).
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Caspase-3/7 Activity Analysis
Caspase-3/7 activity was carried out using the Caspase-Glo 3/7
assay kit (Promega, Madison, WI, United States) according
to the manufacturer’s protocol. Briefly, NCI-H292 cells treated
by curcumin with different dosages (10 and 40 µM). After
24 h treatment, Caspase-Glo 3/7 reagent was added to 96-
well plates. Plates were gently shaken and then incubated
in the dark at 37◦C for 2 h and Caspase-3/7 activity was
recorded using GloMax 20/20 Luminometer (Promega, Shanghai,
China).

Gene Silencing
Small-interfering RNAs targeting human FOXA2 (Gene ID:
207) were synthesized (GenePharma, Shanghai, China) and
transfected into cells with TransIT-TKO (Mirus, Madison, WI,
United States). Scrambled siRNA was a control. Sequences of
siRNA used for FOXA2 silencing were as follows: FOXA2
siRNA, 5′-ACCAGTGGATCATGGACCT-3′; control siRNA,
5′-TTCTCCGAACGTGTCATGT-3′.

Real-Time Quantitative PCR (qRT-PCR)
Total RNA was isolated from NCI-H292 cells using Trizol
reagent (TaKaRa, Dalian, China), and first-strand cDNAs
were prepared using a random hexamer primer according
to the instructions included with the First-Strand Synthesis
Kit (Roche, San Francisco, CA, United States). PCR were
performed using specific forward and reverse primers
(FOXA2, forward, 5′-GGAGCAGCTACTATGCAGAGC-
3′, reverse, 5′-CGTGTTCATGCCGTTCATCC-3′; β-actin,
forward, 5′-CCAACCGCGAGAAGATGA-3′, reverse, 5′-
CCAGAGGCGTACAGGGATAG-3′). Real-time PCR was
performed using Universal Master Mixer (Roche, Switzerland).
Relative expression of the FOXA2 gene was normalized against
β-actin and analyzed via the 2-11Ct method.

[11Ct = (CtTarget − CtReference) sample−

(CtTarget − CtReference) control]. (1)

Western Blot Analysis
Western blot analysis was performed according to published
methods (Ni et al., 2016). Cells were washed once PBS and
dissolved in cell lysis reagent (Cell Signaling Technology,
Danvers, MA, United States). Total protein was separated
with 10% SDS–PAGE, followed by transfer to polyvinylidene
difluoride (PVDF) membrane. The PVDF membrane was
blocked with 5% BSA, washed three times with TBST, and
then incubated with the antibodies separately overnight at
4◦C. Antibodies to β-actin, P-STAT3, and P-STAT6 were
from Cell Signaling (Cell Signaling Technology, Danvers, MA,
United States) and antibodies to FOXA2 were from Santa
Cruz (Santa Cruz Biotechnology, Dallas, TX, United States).
The membrane was then washed with TBST three times
followed by incubation with anti-rabbit IgG or anti-mouse
IgG horseradish peroxidase secondary antibody (Cell Signaling
Technology, Danvers, MA, United States) for 2 h at room
temperature. Finally, immunoreactive bands were visualized

with ECL reagent. Relative protein expression levels were
quantified by using Image J software and normalized to
β-actin.

Nuclear Protein Extraction
The NCI-H292 cells were harvested and nuclear protein
fractions were isolated using a NE-PER Nuclear and
Cytoplasmic Extraction kit (Thermo Fisher Scientific,
Waltham, MA, United States) according to the manufacturer’s
instructions.

Statistical Analysis
The SPSS version 21.0 software was used for data analyses.
Statistical significance was confirmed using a Student’s t-test or
a Mann–Whitney U-test. Statistically significant differences were
defined as p < 0.05.

RESULTS

Effects of Curcumin on Proliferation and
Apoptosis in NCI-H292 Cells
The effect of curcumin on NCI-H292 proliferation was
reconfirmed using a CCK-8 method. Curcumin showed a dose-
and time-dependent inhibition on the growth of NCI-H292 cells
(Figures 1A,B), likely due to increased apoptosis. An Annexin
V apoptosis assay revealed that curcumin promoted NCI-H292
cells apoptosis in a dose-dependent manner (Figures 1C,D).
This dose-dependent apoptotic response was measured by
a luminescent-based Caspase-3/7 assay. The results showed
increased Caspase-3/7 activity with curcumin treatment
(Figure 1E). In addition, pro-apoptotic Bax protein was
upregulated by curcumin (Figure 1F). Thus, curcumin treatment
caused apoptosis and reduced proliferation of NCI-H292
cells.

FOXA2 Was Responsible for
Curcumin-Mediated Cell Growth
Inhibition
To investigate whether FOXA2 was involved in the curcumin-
mediated inhibition of cell growth of NCI-H292 cells, we
examined the expression level of FOXA2 after curcumin
treatment. As shown in Figures 2A,B, curcumin treatment
markedly increase FOXA2 mRNA and protein expression in a
time-dependent manner. We then studied whether curcumin
inhibited NCI-H292 growth in a FOXA2-dependent manner
using FOXA2 siRNA. Curcumin-induced cell proliferation
inhibition was rescued after FOXA2 knockdown compared
to controls (Figure 3A). The inhibitory rate of curcumin was
significantly decreased in FOXA2 knockdown cells compared
to controls (inhibitory rate: 40% vs. 60%). Also, Caspase-3/7
activation was attenuated (Figure 3B), suggesting that curcumin
inhibited NCI-H292 cells growth in FOXA2-dependent
manner.
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FIGURE 1 | Effects of curcumin on proliferation and apoptosis of NCI-H292 cells. NCI-H292 cells were treated with curcumin at the doses indicated or vehicle
(DMSO, control) at different time intervals, following which cell viability (CCK-8) assays (A,B) and cell apoptosis assays (C,D) were performed to determine growth
suppressive effects of curcumin. Cell lysates after curcumin treatment were subjected to Caspase-Glo 3/7 activity analysis (E) and protein expression analysis with
antibodies indicated (F). Data are presented as mean ± SEM from three independent, ∗p < 0.05, ∗∗p < 0.01.

FIGURE 2 | Curcumin increased the expression of FOXA2 in NCI-H292 cells. Cultured NCI-H292 cells were treated with curcumin (40 µM) or vehicle (DMSO,
control) at different time intervals. The mRNA and protein expression level of FOXA2 were determined via qRT-PCR (A) and western blotting (B), respectively. Data
are presented as mean ± SEM from three independent, ∗p < 0.05, ∗∗p < 0.01.

FIGURE 3 | Curcumin inhibited NCI-H292 growth in FOXA2 dependent manner. The siRNA duplexes against FOXA2 were transfected into NCI-H292 cells, and then
incubated in the presence of curcumin (40 µM) or vehicle (DMSO, control) for 24 h, following which cell viability (CCK-8) assays (A) and Caspase-Glo 3/7 activity
assays (B) were performed to determine growth suppressive effects of curcumin. Data are presented as mean ± SEM from three independent, ∗p < 0.05,
∗∗p < 0.01.
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FIGURE 4 | Expression of FOXA2 in human LSCC tissues and adjacent normal tissues. (A) Positive expression of FOXA2 in adjacent normal tissues. (B) Negative
expression of FOXA2 in LSCC tissues. (C) Positive expression of FOXA2 in LSCC tissues. ∗∗p < 0.01 vs. adjacent tissues.

TABLE 1 | FOXA2 expression in human LSCC tissues.

Tissue Case FOXA2 expression p-value

Negative Positive

Tumors 89 59 30 0.000

Adjacent tissues 89 16 73 –

FOXA2 Expression Was Frequently Lost
in LSCC Tissues and Associated with
Cell Proliferation
Next, we measured the expression of FOXA2 in LSCC tissues.
Data showed that FOXA2 was downregulated in LSCC tissues

compared with adjacent normal tissues (Figure 4). Weak
expression or loss of expression of FOXA2 occurred in more
than half of samples analyzed (Table 1). These results suggested
that loss of FOXA2 expression might play important roles in the
tumourigenesis of LSCC. The role of FOXA2 on cell proliferation
was then assessed in NCI-H292 cells using RNA interference.
Figures 5A,B showed that FOXA2 mRNA and protein were
reduced by FOXA2 siRNA treatment. The growth of NCI-
H292 cells transfected with FOXA2 siRNA was significantly
increased after 1, 2, and 3 days compared with the control cells
(Figure 5C). Recent study identified Bax as a putative target gene
of FOXA2 in lung adenocarcinoma cells by screening techniques
(Jang et al., 2015). Also, we found pro-apoptotic Bax protein
and mRNA decreased after FOXA2 knockdown in NCI-H292
cells (Figures 5D,E). Our results demonstrated that FOXA2

FIGURE 5 | Knockdown of FOXA2 increased cell proliferation. The siRNA duplexes against FOXA2 were transfected into NCI-H292 cells, and the mRNA and protein
expression level of FOXA2 and Bax were analyzed using western blotting (A,D) and qRT-PCR (B,E) at 24 h after the siRNA transfections. (C) FOXA2 silenced
NCI-H292 cells were incubated in the 96-well plates for 1, 2, and 3 days, following which CCK-8 assays were performed to determine cell viability. Data are
presented as mean ± SEM from three independent, ∗p < 0.05, ∗∗p < 0.01.
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FIGURE 6 | Curcumin inhibited STAT3 pathway in NCI-H292 cells. (A,B) Cultured NCI-H292 were treated with stattic (10 µM) or vehicle (DMSO, control) for 24 h,
the mRNA and protein expression level of FOXA2 were analyzed using qRT-PCR and western blotting. (C–F) Cultured NCI-H292 were treated with curcumin (40 µM)
or vehicle (DMSO, control) for 0–4 h. P-STAT3 level in the cytoplasmic and nuclear fraction was detected by western blotting. Data are presented as mean ± SEM
from three independent, ∗p < 0.05, ∗∗p < 0.01.

expression was frequently lost in LSCC tissues and loss of FOXA2
expression increased proliferation of NCI-H292 cells.

Inhibition of STAT3 Pathway by Curcumin
Increased FOXA2 Expression in
NCI-H292 Cells
We then investigate the molecular mechanisms underlying
FOXA2 regulation by curcumin. It was reported that the STAT3
pathways might be the upstream regulator of FOXA2 (Mishina
et al., 2015), and curcumin was a STAT3 inhibitor (Alexandrow
et al., 2012). We found that treatment with a STAT3 inhibitor
(stattic) increased FOXA2 expression similarly in NCI-H292 cells
(Figures 6A,B). We then measured phosphorylation of STAT3
in NCI-H292 cells treated with curcumin. P-STAT3 cytoplasmic
protein was reduced by curcumin treatment as was nuclear
protein downregulation (Figures 6C–F). Our results confirmed

that curcumin could inhibit STAT3 pathways in NCI-H292
cells, which was consistent with previous study (Alexandrow
et al., 2012). We next investigated whether curcumin increased
FOXA2 in STAT3-dependent manner. After treatment with
STAT3 activator (IL-6) plus curcumin, expression of FOXA2
was reduced compared with untreated activator-stimulated
NCI-H292 cells (Figure 7). Thus, curcumin increased FOXA2
expression by inhibiting STAT3 signaling.

Curcumin Increased the Expression
Level of SOCS1 and SOCS3 in NCI-H292
Cells
The expression of suppressors of cytokine signaling proteins
(SOCS1, SOCS2, and SOCS3), the negative regulators of STAT3,
was examined by western blot analyses. The relative protein levels
of SOCS2 were unchanged but increased for SOCS1 and SOCS3
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FIGURE 7 | STAT3 pathway was responsible for the increased effect of curcumin on FOXA2 expression. NCI-H292 cells were treated with IL-6 (25 ng/mL) plus
curcumin (40 µM) or vehicle (DMSO, PBS-0.1% BSA, control) for 24 h. The mRNA and protein expression level of FOXA2 were analyzed by using qRT-PCR (A) and
western blotting (B,C). Data are presented as mean ± SEM from three independent, ∗p < 0.05, ∗∗p < 0.01.

FIGURE 8 | Effects of curcumin on SOCSs expression in NCI-H292 cells. (A–D) Cultured NCI-H292 were treated with curcumin (40 µM) or vehicle (DMSO, control)
for 0–4 h. Cell lysates were subjected to protein expression analysis with antibodies indicated. Data are presented as mean ± SEM from three independent,
∗p < 0.05, ∗∗p < 0.01.

after curcumin treatment (Figure 8). Therefore, it is likely that
curcumin increased the expression level of SOCS1 and SOCS3,
thus inhibiting the activity of STAT3 which resulted in change of
FOXA2 expression.

DISCUSSION

LSCC is a NSCLC representing 30% of all lung cancer cases
(Justilien et al., 2014). Unlike lung adenocarcinoma, activating
mutations in EGFR and ALK fusion are typically not present
in LSCC, so targeted agents are largely ineffective against LSCC
(Cancer Genome Atlas Research Network, 2012). Our data agree
with previous studies that curcumin inhibited cell proliferation
of LSCC NCI-H292 cells in a time- and dose-dependent manner
(Amin et al., 2015; Haque et al., 2015). Thus, curcumin may
be an adjuvant for LSCC therapy. Also, expression of FOXA2
was decreased in LSCC patients and curcumin’s ability to slow

NCI-H292 cells growth might be associated with increasing
FOXA2 expression, suggesting that FOXA2 is a novel target of
curcumin.

How FOXA2 participates in lung cancer pathogenesis is not
very clear. In NCI-H358 human lung adenocarcinoma cells,
Halmos’ group reported that overexpression of FOXA2 reduced
growth, arrested proliferation, and increased apoptosis (Halmos
et al., 2004). We noted that growth of NCI-H292 cells transfected
with FOXA2 siRNA significantly increased compared with
controls, suggesting that FOXA2 may be an important regulator
for squamous cell carcinoma cell and adenocarcinoma cell
proliferation. Jang et al. (2015) screened the FOXA2-mediated
transcriptional regulation network in NSCLC and identified Bax
as a putative target gene of FOXA2. We confirmed that Bax was
regulated by FOXA2, which decreased after FOXA2 knockdown.
Also, curcumin treatment increased Bax expression in NCI-H292
cells; therefore, cancer cell growth inhibition by curcumin may be
due to FOXA2-induced Bax upregulation.
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To investigate the molecular mechanisms underlying FOXA2
regulation by curcumin, phosphorylation of STAT3 in NCI-
H292 cells was measured. We found curcumin-mediated FOXA2
upregulation was associated with inhibition of STAT3 signals.
STAT3 proteins are expected to promote gene transcription
by binding to specific DNA sites as homo- or heterodimers
in the promoter region (Mascareno et al., 1998). However,
studies suggest that STAT3 transcription factors can act as
transcriptional repressors by interfering with other transcription
factors (de la Iglesia et al., 2008; Bedel et al., 2011). Meanwhile
other studies indicated that transcription factor SPDEF was
an upstream regulator for FOXA2 expression (Yu et al., 2010;
Du et al., 2017). We found no significantly different changes in
the expression of SPDEF after curcumin treatment of NCI-H292
cells (data not shown), suggesting SPDEF might not be involved
in curcumin-mediated FOXA2 expression. Therefore, more work
is required to validate our preliminary findings whether STAT3
inhibited FOXA2 expression by direct binding to the putative
site in the FOXA2 promoter region, or by interfering with other
transcription factors.

Recent studies indicate that curcumin’s pleiotropic anti-
tumoral activity may be related to the modulation of numerous
signaling molecules such as NF-κB, AP-1, JAK/STAT, MAPK,
Nrf-2, AKT, and PPAR (Gupta et al., 2013; Shehzad and Lee, 2013;
He et al., 2016). Yang et al. (2012) investigated protein changes
upstream of STAT3 in SCLC cells and found that inhibition
of STAT3 phosphorylation was due to inhibition of JAK
because JAK phosphorylation was intermediately suppressed by
curcumin treatment. In our studies, curcumin also decreased the
phosphorylation of STAT3 in both the nucleus and the cytoplasm
in NCI-H292 cells. To better understand the mechanisms
underlying curcumin-mediated suppression of STAT3 activation,
we analyzed proteins upstream of STAT-3. Our data showed
SOCS1 and SOCS3 was upregulated by curcumin treatment.
SOCSs are the cytokine inducible endogenous inhibitors of STAT-
3, which bind through the SH2 domain to phosphotyrosine
residues in either cytokine receptors or JAK and suppress
STAT-3 signaling (Saydmohammed et al., 2010). We found
curcumin treatment increased SOCS3 expression around 4 h

post-stimulation and increased SOCS1 protein appeared earlier
(1 or 2 h) and this was accompanied by a decrease of
phosphorylated STAT3, suggesting that enhancement of SOCS1
protein was likely to be one of the mechanisms contributing to
the early inhibition of STAT3 signal in NCI-H292 cells. Chen
et al. (2013) indicated a regulatory mechanism of SOCS1 and
SOCS3 through inhibition of HDAC activity (especially HDAC8)
by curcumin in myeloproliferative neoplasms. Whether a similar
mechanism for curcumin exists in NCI-H292 cells is not clear.

In summary, we tested and reported the anticancer effects
of curcumin in human NCI-H292 LSCC cells and explored
the potential mechanistic roles. Our results suggested the role
of STAT3 in the upregulation of FOXA2 expression, which
was targeted by curcumin. And the induction of FOXA2 by
curcumin was one of the mechanisms through which curcumin
inhibited NCI-H292 cells growth. In addition, our studies showed
curcumin increased the expression level of SOCS1 and SOCS3,
the negative regulators of STAT3. SOCS1 and SOCS3 might thus
be part of novel targets for curcumin to mediate STAT3-FOXA2
signaling in NCI-H292 cells.
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